Squares \& Square Roots

PART I: Perfect Squares

DEFINITION: the square of a whole number

Square Number

+ Also called a "perfect square"
+ A number that is the square of a whole number
Can be represented by arranging objects in a square.)

Square Numbers

MULTIPLICATION TABLE

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

Square Numbers

$* 1 \times 1=1$
$* 2 \times 2=4$
$* 3 \times 3=9$
$* 4 \times 4=16$

Square Numbers

$+1 \times 1=1$
$+2 \times 2=4$
$+3 \times 3=9$
$+4 \times 4=16$
$+5 \times 5=25$
$+6 \times 6=36$
$+7 \times 7=49$
$+8 \times 8=64$
$+9 \times 9=81$
$+10 \times 10=100$
$+11 \times 11=121$
$+12 \times 12=144$
$+13 \times 13=169$
$+14 \times 14=196$
$+15 \times 15=225$

You have 5 seconds ... take out your white board, marker, \& eraser.
Identify the following numbers as perfect squares or not. If it IS a perfect square show the BASE squared (to the $2^{\text {nd }}$ power) $\begin{aligned} & \text { EX: } 9 \text { IS a perfect square } \\ & \text { because it equals } 3^{2}\end{aligned}$

1. 16
2. 15
3. 146
4. 300
5. 324
6. 729

Activity: Identify the following numbers as perfect squares or not.

1. $16=4 \times 4$
2. 15
3. 146
4. 300
5. $324=18 \times 18$
6. $729=27 \times 27$

Squares \& Square Roots

PART II: Square Root DEFINITION: the length of the side of a square with an area equal to a given number

RADICAL SIGN $\sqrt{ }$: used to represent a square root

Square Numbers

+ One property of a perfect square
4 cm is that it can be represented by a

$\mathbf{4 c m}$| | | | |
| :--- | :--- | :--- | :--- |
| | | | |
| | $16 \mathrm{~cm}^{2}$ | | |
| | | | | square array.

+ Each small square in the array shown has a side length of 1 cm . + The large square has a side length of 4 cm .

Square Numbers

+The large square has an area of $4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2}$.

4cm

+ The number 4 is called the square root of 16.
+We write: $4=\sqrt{16}$

Square Root

+ A number which, when multiplied by itself, results in another number.
$+E x: 5$ is the square root of 25.

$$
5=\sqrt{25}
$$

Finding Square Roots

+Quick Steps: Find...

+ STEP 1: THINK ... What \# to the $2^{\text {nd }}$ power EQUALS the \# inside of the radical? _²= 64
+ STEP 2: Double check your answer with multiplication. Multiply the BASE X BASE. $8 \times 8=64$ so the square root of $64=8$

Finding Square Roots

+ Guided Practice: Find the square root of 100

$\sqrt{100}$
+ We know that $10^{2}=100$ So the square root of $100=10$

Finding Square Roots

You have 3 seconds: white board, marker, eraser
+Activity: Find the square root of 144
$\sqrt{144}$

+ We know that $12^{2}=144$
So the square root of $100=12$

Finding Square Roots

+Activity: Find the square root of 121

$$
\sqrt{121}
$$

+ We know that $11^{2}=121$
So the square root of $121=11$

Finding Square Roots

+Activity: Find the square root of 169

$\sqrt{169}$

+ We know that $13^{2}=169$
So the square root of $169=13$

Finding Square Roots of Numbers larger than 200

+ Activity: Find the square root of $256 \sqrt{256}$ STEP 1:
BREAK THE LARGER \# INTO $=\sqrt{4} \times \sqrt{64}$
SMALLER RADICALS

STEP 2:

FIND THE SQUARE ROOT OF EACH RADICAL = 2×8 STEP 3:
MULTIPLY THE TWO \#S = 16

Finding Square Roots of Numbers larger than 200

+ Activity: Find the square root of $10000 \sqrt{10000}$ STEP 1:

BREAK THE LARGER \#
INTO SMALLER RADICALS OF $=\sqrt{100} \times \sqrt{100}$
PERFECT SQUARES
STEP 2:
FIND THE SQUARE ROOT OF = 10×10 EACH RADICAL
STEP 3:
MULTIPLY THE TWO \#S = 100

QUICKWRITE: Summary of Learning

A friend has just called you asking, "What did we learn in math class today?"
(Your response is ... YOU HAVE 2 MINUTES TO WRITE ... use key vocabulary)

HOMEWORK

5-6 PW (1-28 all)

Squares \& Square Roots

Estimating Square Root

NON PERFECT SQUARE - a \# that when squared is not a whole \#.
EX: 6 is a non perfect square because $\sqrt{6}$ is a DECIMAL

Estimating Square Roots

$\sqrt{25}=?$

Estimating Square Roots

$$
\sqrt{25}=5
$$

Estimating Square Roots

$$
\sqrt{49}=?
$$

Estimating Square Roots

$$
\sqrt{49}=7
$$

Estimating Square Roots

$$
\sqrt{27}=?
$$

$$
\begin{gathered}
\text { Estimating } \\
\text { Square Roots } \\
\sqrt{27}=\text { ? }
\end{gathered}
$$

Since 27 is not a perfect square, we have to use another method to calculate it's square root.

Estimating Square Roots

+ Not all numbers are perfect squares. + Not every number has an Integer for a square root.
+ We have to estimate square roots for numbers between perfect squares.

Estimating Square Roots

+ To calculate the square root of a nonperfect square

STEP 1: Place the values of the adjacent perfect squares on a number line.

STEP 2: Interpolate between the points to estimate to the nearest tenth.

Estimating Square Roots

+Example: $\sqrt{27}$

What are the perfect squares on each side of $27 ?$

Estimating Square Roots

+Example: $\sqrt{27}$
half

27
Estimate $\sqrt{27}=5.2$

Estimating Square Roots

+Example:
$\sqrt{27}$

+Estimate: $\sqrt{27}=5.2$
+Check: (5.2) (5.2) = 27.04

CLASSWORK

PAGE 302 - 1,3,6,8,9,11,13
PAGE 303 - 16,17,20,22,23,24,26

If finished: Complete page 50 to get ready for your test.

The End

Thanks

